
research papers

1038 doi:10.1107/S0108768106026553 Acta Cryst. (2006). B62, 1038–1042

Acta Crystallographica Section B

Structural
Science

ISSN 0108-7681

A new simplifying approach to molecular geometry
description: the vectorial bond-valence model

Miguel Angel Harvey,a* Sergio

Baggiob and Ricardo Baggioc

aUniversidad Nacional de la Patagonia, Sede

Trelew, and CENPAT, CONICET, Puerto

Madryn, Chubut, Argentina, bUniversidad

Nacional de la Patagonia, Sede Puerto Madryn,

and CENPAT, CONICET, Puerto Madryn,

Chubut, Argentina, and cComisión Nacional de
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A method to describe, analyze and even predict the

coordination geometries of metal complexes is proposed,

based on previous well established concepts such as bond

valence and valence-shell electron-pair repulsion (VSEPR).

The idea behind the method is the generalization of the scalar

bond-valence concept into a vector quantity, the bond-valence

vector (BVV), with the innovation that the multidentate

ligands are represented by their resultant BVVs. Complex n-

ligand coordination spheres (frequently indescribable at the

atomic level) reduce to much simpler ones when analyzed in

BVV space, with the bonus of a better applicability of the

VSEPR predictions. The geometrical implications of the BVV

description are analyzed for the cases of n = 2 and 3 (n =

number of ligands), and the validity of its predictions, checked

for a large number of metal complexes.
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1. Introduction

In the structural study of coordination compounds, many

attempts have been made to find a theory capable of

describing (and even predicting) the binding behaviour of

different types of ligands around the corresponding metallic

centres. Almost all of these endeavours fall into two main

categories: those centred in the metal–ligand interaction, with

good achievements in the description of bond lengths but with

little to say about the spatial distribution of ligands (Brown,

1994); and, on the other side, those which through the study of

ligand–ligand (or electron pair) repulsion try to explain their

relative disposition around the metal centre, but disregard the

relation to the centre itself (Gillespie, 1970; Robinson et al.,

1999). Although the latter approach has been the most widely

used to describe the metal environments in coordination

complexes (probably through the valence-shell electron-pair

repulsion model, VSEPR), both points of view have produced

meaningful results and have introduced a number of fruitful

and familiar concepts in the structural chemist’s language:

bond valence, coordination sphere etc. However, and in spite

of their achievements, the theories so far developed encounter

some limitations when the ligands involved are not mono-

dentate and the steric limitations introduced by multidentate

ligands appear. In these cases the coordination descriptions or

predictions begin to deviate considerably from theoretical

expectations and attempts to relate real geometries to

predicted polyhedra usually become difficult or impossible.

Looking for a phenomenological (but at the same time

unified) description which would allow merging of the most

important aspects of both approaches we started a systematic

study of the coordination geometries of mono- and poly-

dentate ligands, mainly in complexes with group 12 cations

(the ones with which we usually deal), but the conclusions



found can be readily extended, with at most minor modifica-

tions, to other cations.

Our long-standing experience with group 12 metal

complexes containing polydentate ligands had shown us that

their adherence to the bond-valence sum rule �isi = V (the

sum of the bond valences adds up to the metal valence; Brown,

1994) is, at best, fair. The rule is frequently obeyed rather

loosely and the coordination polyhedron is hard to describe

when polydentate ligands (with their intrinsic restraints

imposed by chelation etc.) are present.

The so-called ‘Sum Rule’ is a scalar condition, in which

knowledge of the particular arrangement of ligands in space is

disregarded in principle. However, it is almost intuitive that

this spatial information ignored by the model (viz. the

bunching of donors in a polydentate ligand) ought to be

describable through some kind of directional parameter, such

as a vector. The idea of vector bond valences is not new: in an

early paper Brown (1988) used them as a measure of the

distorting influence of lone electron pairs and, more recently,

Müller et al. (2003) made use of a similar idea. In this paper,

however, we apply the concept to the so-far unexplored

universe of chelating ligands. The simplifications achievable

through this approach in the description of the (very often

complex) coordination spheres they give rise to is basically the

scope of this paper.

2. The model

On a strictly phenomenological basis, we propose the

following.

2.1. Vector bond valence (VBV) or vector sum, postulate

‘Let si be a vector directed from the metal to the Aith

coordinated atom, with a length equal to the absolute value of

the corresponding ‘bond valence’ si, representing the strength

of the interaction. Then, in any stable coordination sphere the

sum of all these vectors is nearly zero, i.e. the condition �si’ 0

holds.’

3. Results and analysis

We present some data confirming the validity of this postulate

and shall try to show its richness of content, which adds a

complementary, and in some sense superseding, condition to

the well known charge-balance requirement �i si = V imposed

by the bond-valence theory.

Before dealing with the quantitative analysis,1 we discuss in

qualitative terms the beautiful simplicity with which this

almost naı̈ve vector approach can ‘explain’ many of the find-

ings of other previous ones, such as VSEPR and the recent

‘idealized ionic model’ of Preiser et al. (1999) which provides a

theoretical foundation for the bond-valence model.

The fact that a strong bond ‘expels’ from its vicinity the

neighbouring ones (due to the electron density involved in the

bond) is reflected in the vector approach in the fact that in

order to compensate for a long vector (= strong interaction =

short bond), the remaining shorter vectors (= weaker inter-

action = longer bond) have to ‘bunch’ trying to oppose it, so as

to allow for vectorial cancellation.

The model proposes in quite a natural way a simple treat-

ment of coordination spheres which include multidentate, but

‘directional’, ligands. Here we use the term ‘directional’ as

opposed to clathrate, which for the present discussion would

operate as an ‘omni-directional’ ligand embracing the cation

without a preferred orientation, and which we exclude from

our analysis. Inspection of a large number of structures

including these ‘directional’ ligands suggests that the way in

which they arrange in space might be explained if they behave

as ‘fuzzy’ centres, or electron density conglomerates. In trying

to find a representative ‘direction of coordination’ for these

conglomerates it would be reasonable to choose a vector

pointing towards the bulk of the charge distribution, perhaps

towards something like its ‘centre of charge’. However, that is

precisely what the vectorial sum v = �si of the bond-valence

vectors corresponding to the individual bonded atoms repre-

sents. As a bonus, by representing the n ligands present in the

complex by their resultant vectors vj (j = 1, n), the frequently

indescribable polyatomic coordination sphere reduces to a

much simpler one, sometimes adorned with a symmetry which

the complexity of the original problem tends to obscure.
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Figure 1
Schematic representation of a three-ligand seven-coordinated complex
and its reduction to a simple, planar pseudo-trigonal description using the
VBV model.

1 The bond valence of a donor atom Ai interacting with a metal atom M is
given by the expression si = exp[(Roi� Ri)/b], where si: bond valence, Ri: bond
length between atoms Ai and M, and Ro and b are experimental parameters,
the former being the length of a bond of unit valence. We have used the Ro
and b parameters compiled by Orlov & Popov (2002) and originally
elaborated by Brown (2002). For those cases not covered therein, the
commonly accepted value of 0.37 has been used for b, while Ro was calculated
according to O’Keefe & Brese (1991).



Application of this model led us to a surprising simplifica-

tion of the treatment of the coordination of many compounds

studied so far, which had resisted efforts to provide a

reasonable description of their geometry. In the following

discussion the bold type refers to a vector, normal type to a

scalar; indices i run over atoms, and indices j run over ligands.

Fig. 1 illustrates the way in which a three-ligand cadmium

complex [Cd(tpy)(Ac)2�2H2O] (Harvey et al., 2005) displaying

a hepta-coordinated and geometrically hard-to-describe metal

centre reduces to a much simpler pseudo-trigonal scheme

which fulfills the VSEPR model. The individual vj moduli (in

grey in Fig. 1) are 0.58, 0.49 and 0.50. The small residual sum

vector (|�j vj| = 0.11, in red in Fig. 1) shows that compliance to

the rule is not strict. On the other hand, the planarity of the set

of three vectors is almost perfect, as assessed by the sum of the

internal angles, 360.0 (1)�

As the original bond-valence model itself might present

some limitations in its applicability (for example when elec-

tronic distortions are present), we felt it more appropriate to

validate our VBV postulate through complexes of group 12

metals (ZnII, CdII, HgII), in order to avoid disrupting distor-

tions as well as sterically active free electron-pair effects. As a

way to counterbalance any bias introduced by this single

group selection, we included NiII as a fourth probe in the

checking procedure.

Even with this restriction, a thorough confirmation of such a

general postulate presents a formidable task. In this first

presentation we have limited ourselves to the analysis of a

reduced number of donor atoms (N, O and S) and to a small

number of ligands (n = 2 or 3, although allowing for any

possible chelation order). The case examples were single

cation monomeric structures taken from the 2004 edition of

the Cambridge Structural Database (CSD; Allen, 2002) that

had been refined to R < 0.075 and had no error flag. There

were 152 molecules with n = 2 and 98 with n = 3 for group 12

metals (ZnII, CdII, HgII), and 146 with n = 2 and 74 with n = 3,

for NiII.

Figs. 2 and 3 present histograms of the quantities t = abs(�isi

� V) and r = j�jvjj for n = 2 and n = 3, respectively, both of

which ought to be zero: t according to the Bond Valence

Theory and r based on our vector bond-valence postulate.

Even though the quantities represent different (though

related) concepts, the condition of the vanishing modulus

derived from the latter is better fulfilled.

The most surprising results came from the geometrical

implications of this fulfillment, which in both cases would

imply very simple and readily verifiable consequences: for n =

2, a nil resultant would indicate the presence of collinear,

opposite ligands (measurable by an angle between vj vectors

research papers

1040 Miguel Angel Harvey et al. � Vectorial bond-valence model Acta Cryst. (2006). B62, 1038–1042

Figure 3
Three-ligands case: deviations from ideal values for the scalar and
vectorial bond-valence sum: (a) Group 12 metals; (b) Ni.

Figure 2
Two-ligands case: deviations from ideal values for the scalar and vectorial
bond-valence sum: (a) Group 12 metals; (b) Ni.



of 180�), and for n = 3 strictly coplanar ones (as measured by a

sum of angles to 360�). Figs. 4 and 5 present histograms of the

distribution of the parameters measuring these geometrical

characteristics: the deviation from 180� for the angle between

‘opposite’ vectors for n = 2 (Fig. 4), and the deviation from

360� for the sum of adjacent angles in the case of n = 3 (Fig. 5).

Even though deviations from ideal values in both cases

cannot be directly compared, the fact that those for n = 2

appear to be larger than those for n = 3 seems to be a

consequence of the latter case having more degrees of

freedom: while the residual �jvj vector can in principle be

modified by changes in the angles without disturbing the

coplanarity and vice versa, in the case of n = 3, for n = 2, there

is no way to eliminate any eventual difference between the

moduli of the intervening vj vectors through the modification

of their orientations. Therefore, in the case of group 12 cations,

while 98.0% of our n = 3 universe (96/98 cases) present a sum

of inter vj angles in the range 359–360�, for n = 2 the median is

175�. Similar values can be found for the NiII complexes: for

n = 3 all the analyzed cases (74) are in the range 359–360�,

while for n = 2 (146 cases) the median is 177.4�.

4. Conclusions

The present proposal that the ‘bond valence’ could be

considered as a vector quantity able to characterize each

multidentate ligand in a complex by its resultant vector – a

proposal incorporating both the bond-valence and the VSEPR

models – presents two main advantages: first it allows an easy

geometrical description of the coordination sphere even when

complex multidentate ligands are present; second, it furnishes

an analytical tool for the analysis of interactions and packing

effects, sometimes providing a simple, ‘ideal’ geometry to be

used as a reference.

In the present paper the usefulness of the proposal has been

proved for a subset of metals for which the principles of the

original bond-valence theory was expected to apply (ZnII,

CdII, HgII, NiII) and in the simplest cases (n = 2, 3), where the

computational tools needed could be provided by the authors’

limited expertise.2 Extension of the proposal to more complex

situations ought to be explored in order to have a more

definite view of its real capabilities.
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Figure 5
Three-ligands case: deviation from 360� of inter bond-valence–vector
angles sum: (a) Group 12 metals; (b) Ni.

Figure 4
Two-ligands case: deviation from 180� of the inter bond-valence–vector
angle: (a) Group 12 metals; (b) Ni.

2 The very simple programs devised for the calculations are available on
request from the authors.
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